Article 6113

Title of the article

APPLICATION OF A SYSTEM OF DIFFERENTIAL EQUATIONS WITH A DVERGENT ARGUMENT IN MODELING A PROCESS OF SCIENTIFIC STAFF REPRODUCTION 

Authors

Atryakhin Vladimir Andreevich, Postgraduate student, Mordovian State University named after N. P. Ogaryov (Republic of Mordovia, Saransk, 68 Bolshevistskaya str.), Atrvol@rambler.ru
Shamanaev Pavel Anatol'evich, Candidate of physical and mathematical sciences, associate professor, head of the department of applied mathematics, Mordovian State University named after N. P. Ogaryov (Republic of Mordovia, Saransk, 68 Bolshevistskaya str.), Korspa@yandex.ru

Index UDK

51-77, 519.62 

Abstract

The article suggests a mathematical model describing the process of reproduction of the scientific staff at the stage of admission to graduate school, using a system of ordinary differential equations with retarded arguments, presents a numerical algorithm to solve it. The unknown parameters of the mathematical model are calculated on the basis of the known statistical data for the preceding predictable period of time. Further, the article presents the forecasting results of the scientific staff reproduction on the basis of the constructed mathematical model. 

Key words

ordinary differential equations with retarded argument, mathematical modeling, reproduction of scientific staff.

Download PDF
References

1. El'sgol'ts, L. E. Vvedeniye v teoriyu differentsial'nykh uravneniy s otklonyayushchimsya argumentom / L.E.El'sgol'ts, S. B. Norkin. – M. : Nauka, 1971. – 296 s.
2. Shamanayev, P. A. Chislennoye modelirovaniye dinamiki potoka nauchnykh i nauchno-pedagogicheskikh kadrov na osnove statisticheskikh dannykh po MGU im. N. P. Ogareva / P. A. Shamanayev, V. A. Atryakhin // Zhurnal Srednevolzhskogo matematicheskogo obshchestva. – 2011. – T. 13, № 1. – S. 84–90.
3. Borodkin, F. M. Prognozirovaniye chislennosti naseleniya i migratsii sistemoy differentsial'nykh uravneniy / F.M.Borodkin, S. V. Soboleva // Mate-maticheskiye metody v sotsiologii. – Novosibirsk, 1974. – S. 99–145.
4. Prasolov, A. V. Dinamicheskiye modeli s zapazdyvaniyem i ikh prilozheniya v ekonomike i inzhenerii / A.V.Prasolov. – SPb. : Lan', 2010. – 192 s.
5. Samarskiy, A. A. Chislennyye metody / A. A. Samarskiy, A. V. Gulin. – M. : Nauka, 1989. – 262 s.

 

Дата создания: 20.01.2014 11:10
Дата обновления: 21.07.2014 08:20